Abstract

To address the challenge of balancing privacy protection with regulatory oversight in blockchain transactions, we propose a regulatable privacy protection scheme for blockchain transactions. Our scheme utilizes probabilistic public-key encryption to obscure the true identities of blockchain transaction participants. By integrating commitment schemes and zero-knowledge proof techniques with deep learning graph neural network technology, it provides privacy protection and regulatory analysis of blockchain transaction data. This approach not only prevents the leakage of sensitive transaction information, but also achieves regulatory capabilities at both macro and micro levels, ensuring the verification of the legality of transactions. By adopting an identity-based encryption system, regulatory bodies can conduct personalized supervision of blockchain transactions without storing users’ actual identities and key data, significantly reducing storage computation and key management burdens. Our scheme is independent of any particular consensus mechanism and can be applied to current blockchain technologies. Simulation experiments and complexity analysis demonstrate the practicality of the scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.