Abstract

Physical attributes of Chinese herbal extracts are determined by their chemical components, and the physical and chemical attributes jointly affect the preparation process performance and the final product quality. Therefore, in order to improve the quality control of Chinese herbal extracts, we should comprehensively study the batch-to-batch consistency of physical and chemical attributes as well as the correlations between them. This paper first explored the physical attributes affecting the preparation process performance of the compound Danshen extract and developed a method for characterizing the texture attributes. With such main chemical components as water, phenolic acids, saponins, and saccharides and texture, rheology, and other physical attributes taken into consideration, the batch-to-batch quality fluctuation of products from different production lines and time was analyzed by principal components analysis(PCA). Finally, the correlation and partial least squares(PLS) analysis was conducted, and the regression equation was established. The fitting result of the PLS model for dynamic viscosity was satisfying(R~2Y=0.857, Q~2=0.793), suggesting that the chemical components could be adjusted by the component transfer rate in the extraction process, the impurity removal rate in the alcohol precipitation process, and the water retention rate of the concentration process to meet the control of the extract dynamic viscosity. This study clarified the correlations between physical and chemical attributes of the compound Danshen extract and established a method for controlling its physical attributes based on process regulation, which would provide reference for improving the quality control of Chinese herbal extracts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.