Abstract

Automated guided vehicles (AGVs) play a critical role in indoor environments, where battery endurance and reliable recharging are essential. This study proposes a multi-sensor fusion approach that integrates LiDAR, depth cameras, and infrared sensors to address challenges in autonomous navigation and automatic recharging. The proposed system overcomes the limitations of LiDAR’s blind spots in near-field detection and the restricted range of vision-based navigation. By combining LiDAR for precise long-distance measurements, depth cameras for enhanced close-range visual positioning, and infrared sensors for accurate docking, the AGV’s ability to locate and autonomously connect to charging stations is significantly improved. Experimental results show a 25% increase in docking success rate (from 70% with LiDAR-only to 95%) and a 70% decrease in docking error (from 10 cm to 3 cm). These improvements demonstrate the effectiveness of the proposed sensor fusion method, ensuring more reliable, efficient, and precise operations for AGVs in complex indoor environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.