Abstract

Abstract To improve the photoelectric test accuracy of moving objects, in this study, the speed attenuation caused by air resistance was introduced into the double-N six-light-screen test system, and the test system was theoretically analyzed through oblique incidence with field experiment for verification. It was found in the study that the optimal test values for yaw angle, pitch angle, axial speed, and distance could be obtained by selecting the pulse time origin at the center of two light screen groups. In addition, mud pellets were used for field experiments to effectively verify the simulation results. In a new model, the test accuracy of yaw angle and pitch angle was greatly improved when compared with traditional processing methods, but the laws of error distribution remained almost unchanged. The error of axial speed showed monotonicity as affected by the pitch angle. At the same time, the error of test distance remained symmetric with the improved accuracy, thereby meeting the statistical test requirements for small-volume moving objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call