Abstract

This paper focuses on the directivity design of array structures of acoustic directional transducers. Based on Huygens principles, the directivity formula of transducer arrays under random distribution in xyz space is derived when the circular piston transducers are used as the array element, which is used to analyze the directivity and acoustic pressure of conical transducer arrangements. In addition, a practical approach to analyze the directivity and acoustic pressure of transducer arrays under random arrangements is proposed. Findings. The conical transducer arrays show side lobes at higher frequency. Below the frequency of 2 kHz, array directivity shows rapid changes. Above the frequency of 2 kHz, array directivity varies slowly with frequency. Besides, the beam width is Θ − 3 dB ≤ 29.85 ° .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.