Abstract

Constant tension control is essential for excellent winding quality. However, the system’s nonlinearity and external disturbance make it challenging to guarantee tension control accuracy with conventional control methods. Thus, a self-coupling fractional-order proportional–integral–derivative (SC-FOPID) control scheme combined with a disturbance observer is proposed to enhance the system’s anti-vibration performance. The fractional-order dynamic model of the unwinding roller and swing rod is established by analyzing the tension mechanism. Based on deliberate analysis and calculation, the vibration shock signal can be decomposed into periodic sinusoidal disturbance and bounded noise approximately. As such, an output-based anti-vibration method using a fractional-order model can be realized, where a back recursive disturbance observer is designed to estimate the periodic component. Simultaneously, the bounded noise exhibited in vibration can be attenuated by the SC-FOPID controller. The stability is guaranteed using the Lyapunov theorem, and the simulation results show the proposed method’s effectiveness in improving the tension control performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call