Abstract

In the process of inspecting the self-exploding defects of power line insulators, traditional algorithms suffer from various issues such as long detection time, insufficient accuracy, and difficulties in effective detection under complex environments. To address these problems, we introduce an advanced one-stage object detection algorithm called YOLOv5s, which offers fast training and excellent detection performance. In this paper, we applied the YOLOv5s algorithm to improve the detection precision and classification accuracy of insulator self-explosions. To further enhance the YOLOv5s algorithm, we introduced a BiFPN (Bidirectional Feature Pyramid Network) module for feature fusion. This module improved the feature fusion process by learning the importance weights of different input features, considering their contributions. To tackle the challenge of detecting small objects in the self-exploding insulator dataset, we incorporated an SPD (spatial-to-depth convolution) module that focuses on capturing features in small regions and utilizes one-step convolution layers to avoid losing fine-grained information. To address the issue of high similarity between self-exploding insulator regions and intact insulator regions, we introduced an attention mechanism that concentrates attention on the defective insulator regions to gather more information about insulator defects. Experimental results validate that all three improvement methods significantly enhance detection precision. The final model achieves improvements of 2.0% in precision, 0.9% in recall, and 1.5% in average detection accuracy. Through target detection of the test dataset, insulators with self-explosion cases can be effectively detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.