Abstract
The objective of this study is to investigate the potential risks posed by snowdrifts, a prevalent cause of natural disasters in northern China, on railway subgrades, and to assess their risk level. As a wind-driven process of snow migration and redeposition, snowdrifts pose a significant threat to the safety of transportation infrastructures. This study focuses on the Afu Railway in Xinjiang, situated on the northern slopes of the Eastern Tianshan Mountains, where it experiences periodic snowdrifts. We employed a combination of the Analytic Hierarchy Process (AHP) and fuzzy comprehensive evaluation (FCE) to construct an integrated evaluation system for assessing the risk of snowdrift to railway subgrades. The results indicate that subgrade design parameters and regional snowfield conditions are two key metrics affecting the extent of snowdrift disasters, with topography, vegetation coverage, and wind speed also exerting certain impacts. The evaluation method of this study aligns with the results of on-site observations, verifying its accuracy and practicality, thereby providing a solid risk assessment framework for snowdrifts along the railway. The scientific and systematic hazard assessment method of railway subgrades developed in this research provides basic data and theoretical support for future research, and provides a scientific basis for relevant departments to formulate countermeasures, so as to improve the safety and reliability of railway operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.