Abstract

Identification of real-time uterine contraction status is very significant to labor analgesia, but the traditional uterine contraction analysis algorithms and systems cannot meet the requirement. According to the situations mentioned above, this paper designs a set of algorithms for the real-time analysis of uterine contraction status. The algorithms include uterine contraction signal preprocessing, uterine contraction baseline extraction based on histogram and linear iteration and an algorithm for the real-time analysis of uterine contraction status based on finite state machines theory. It uses the last uterine status and a series of state transfer conditions to identify the current uterine contraction status, as well as a buffer mechanism to avoid false status transitions. To evaluate the performance of the algorithm, we compare it with an existing uterine contraction analysis algorithm used in the electronic fetal monitor. The experiments show that our algorithm can analyze the uterine contraction status while monitoring the uterine contraction signal in a real-time. Its sensitivity reaches 0.939 9 and its positive predictive value is 0.869 3, suggesting that the algorithm has high accuracy and meets the need of clinical monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.