Abstract

Accurate analysis of the air gap magnetic field is the focus of research in the field of precision permanent magnet linear synchronous motors. In this paper, the two-dimensional air gap magnetic field of a secondary trapezoidal Halbach permanent magnet array coreless permanent magnet linear synchronous motor (PMLSM) was taken as our research object. On the basis of the equivalent surface current method, we proposed an improved equivalent analytical algorithm with a trapezoidal side length unit. The equivalent analytical model of the magnetic induction vector of the two-dimensional air gap was established, and the air gap magnetic field of the trapezoidal Halbach array coreless PMLSM was calculated. At the same time, we analyzed the influence of the bottom angle α of a trapezoidal permanent magnet equivalent width coefficient αw, pole height coefficient αh, and air gap height coefficient αg on the amplitude (Bpeak) and total harmonic distortion (THDB) of the central magnetic field in the air gap. The results show that α and αw have a significant influence on the Bpeak and THDB of the central magnetic field air gap. With the synergy of α and αw, we identified the “flux convergence” effect, which makes the maximum range of Bpeak α > 90° and αw < 0.5. We also found the “equilateral” effect, which causes the minimum region of THDB to change linearly. The calculation results of the improved equivalent surface current analytical model established in this paper agree with those verified by the finite element method. The calculation is convenient, and the accuracy of the result is high. This research provides a new method for analyzing the air gap magnetic field of a permanent magnet with a nonrectangular cross-section and lays a theoretical foundation for optimizing the PMLSM pole model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call