Abstract
Cognitive radar is a new framework of radar system proposed by Simon Haykin recently. Adaptive waveform selection is an important problem of intelligent transmitter in cognit i ve radar. In this paper, the problem of adaptive waveform selection is modeled as stochastic dynamic programming model. Then backward dynamic programming, temporal difference learning and Q-learning are used to solve this problem. Optimal waveform selection algorithm and approximate solutions are proposed respectively. The simulation results demonstrate that the two approximate methods approach the optimal waveform selection scheme and have lower uncertainty of state estimation compared to fixed waveform. The performance of temporal difference learning is better than Q-learning, but Q-learning is more suitable to use in radar scene. Finally, the whole paper is summarized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.