Abstract
In order to establish a prediction model of PM and NOx emission factors for heavy-duty diesel vehicles under actual road conditions based on OBD remote monitoring and big data, this paper carried out actual road tests on two China V heavy-duty diesel vehicles to obtain transient OBD and emission data by a Portable Emission Measurement System (PEMS) and self-developed On-board Remote Emission Measurement System (OREMS). According to the degree of influence of different parameters in the engine OBD on PM and NOx emissions, the principal component analysis method is used to extract the principal component parameters used to predict the model input, and the construction of a "Heavy-duty Diesel Vehicle Predictive Model based on Remote Monitoring Data and Neural Network Technology". Finally, the predictive model is trained and verified by PEMS test data. The prediction model provides new means and methods for the future development of large-scale heavy-duty diesel vehicle NOx and PM emission predictions under actual road operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.