Abstract
The objects presented in synthetic-aperture radar (SAR) images are the products of the joint actions of ground objects and SAR sensors in specific geospatial contexts. With the accumulation of massive time-domain SAR data, scholars have the opportunity to better understand ground-object targets and sensor systems, providing some useful feedback for SAR-data processing. Aiming at normalized and low-cost SAR radiometric monitoring, this paper proposes a new hyper-pixel concept for handling multi-pixel ensembles of semantic ground targets. The special hyper-pixel in this study refers to low-rise single-family residential areas, and its radiation reference is highly stable in the time domain when the other dimensions are fixed. The stability of its radiometric data can reach the level of 0.3 dB (1σ), as verified by the multi-temporal data from Sentinel-1. A comparison with tropical-rainforest data verified its availability for SAR radiometric monitoring, and possible radiation variations and radiation-intensity shifts in the Sentinel-1B SAR products ere experimentally monitored. In this paper, the effects of seasonal climate and of the relative geometrical states observed on the intensity of the hyper-pixel’s radiation are investigated. This paper proposes a novel hyper-pixel concept for processing and interpreting SAR-image data. The proposed residential hyper-pixel is shown to be useful in multi-temporal-data observations for normalized radiometric monitoring and has the potential to be used for cross-calibration, in addition to other applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.