Abstract

To solve the problems of low recognition accuracy and large amounts of computation required in forest fire detection algorithms, this paper, aiming to make improvements in these two aspects, proposes a G-YOLOv5n-CB forest fire detection algorithm based on the YOLOv5 algorithm and develops a set of real-time fire monitoring systems applicable to campus forest land with the aid of deep learning technology. The system employs an unmanned vehicle to navigate automatically and collect image information through a camera and deploys its algorithm on the unmanned vehicle’s Jetson Nano hardware platform. The results demonstrate that the proposed YOLOv5n-CB algorithm increased the mAP value index by 1.4% compared with the original algorithm on the self-made forest fire dataset. The improved G-YOLOv5n-CB model was deployed on the Jetson Nano platform for testing, and its detection speed reached 15 FPS. It can accurately detect and display real-time forest fires on campus and has, thus, a high application value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.