Abstract

Current swirl combustion technology with faulty coal lacks flexibility for peak shaving without aids, necessitating a novel low–load stable combustion technology. This paper presented such a technology, developed from gas–particle experiments, that did not require major modifications to the burner secondary air structure. The new technology was applied to a low NOx axial swirl burner (LNASB) in a 350 MW boiler and a vortex swirl burner (VSB) in a 700 MW boiler. Comparative analysis at 20 % boiler load showed both prototypes lacked recirculation zones, characterized by high primary air axial velocities and low turbulence intensity. After modification, LNASB became stable combustion LNASB (SLNSB), and VSB became stable combustion VSB (SVSB). SLNASB had a central recirculation zone, while SVSB had a large annular recirculation zone. The relative length and diameter of SLNASB's recirculation zone were 0.7 and 0.472, while for SVSB, they were 1.5 and 0.477. LNASB had a diffusion angle of 4.7° and a swirl number of 0.511; SLNASB had 29.7° and 0.695; VSB had 11.4° and 0.445; SVSB had 33.3° and 0.784. The turbulence intensity of SLNASB and SVSB were notably higher than their prototypes. High–concentration particles accumulated at the center of SLNASB and SVSB, then entered the recirculation zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.