Abstract
The empirical solution parameters for the Density-Based Spatial Clustering of Applications with Noise(DBSCAN) resulted in poor Clustering effect and low execution efficiency, An adaptive DBSCAN algorithm based on genetic algorithm and MapReduce programming framework is proposed. The genetic algorithm (minPts) and scanning radius size (Eps) optimized intensive interval threshold, at the same time, combined with the similarities and differences of data sets using the Hadoop cluster parallel computing ability of two specifications, the data is reasonable of serialization, finally realizes the adaptive parallel clustering efficiently. Experimental results show that the improved algorithm (GA) - DBSCANMR when dealing with the data set of magnitude 3 times execution efficiency is improved DBSCAN algorithm, clustering quality improved by 10%, and this trend increases as the amount of data, provides a more precise threshold DBSCAN algorithm to determine the implementation of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.