Abstract

To achieve durable high-performance fiber-reinforced concrete that meets economic requirements, this paper introduces a hybrid intelligent framework based on the Latin hypercube experimental design, response surface methodology (RSM), and the NSGA-III algorithm for optimizing the mix design of high-performance fiber-reinforced concrete. The developed framework allows for the prediction of concrete performance and obtains a series of Pareto optimal solutions through multi-objective optimization, ultimately identifying the best mix proportion. The decision variables in this optimization are the proportions of various materials in the concrete mix, with concrete’s frost resistance, chloride ion permeability resistance, and cost as the objectives. The feasibility of this framework was subsequently validated. The results indicate the following: (1) The RSM model exhibits a high level of predictive accuracy, with coefficient of determination (R-squared) values of 0.9657 for concrete frost resistance and 0.9803 for chloride ion permeability resistance. The RSM model can be employed to construct the fitness function for the optimization algorithm, enhancing the efficiency of multi-objective optimization. (2) The NSGA-III algorithm effectively balances durability and cost considerations to determine the optimal mix proportion for the concrete. After multi-objective optimization, the chloride ion permeability resistance and frost resistance of the high-performance fiber-reinforced concrete improved by 38.1% and 6.45%, respectively, compared to the experimental averages, while the cost decreased by 2.53%. The multi-objective optimization method proposed in this paper can be applied to mix design for practical engineering projects, improving the efficiency of concrete mix design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call