Abstract

Interleaved DC–DC converters have significant advantages in improving the capability of power converters, and coupling the filtering inductor of the converter could further increase the power density. However, existing modeling and controller designs are complex and require multiple sensors to be involved in the control, which is not conducive to engineering implementation and reducing production costs. In view of this problem, taking a two-phase interleaved boost converter with a coupled inductor as an example, the small-signal models of the converter are derived for the resistive load and constant voltage source load using the state averaging method. The total inductor current is engaged in the control as a feedback signal, avoiding the coupling effect of the inductor on increasing the complexity of the controller. Based on this, a double closed-loop controller is designed, and a prototype of the two-phase interleaved boost converter with coupled inductor is built. Only one current sensor and one voltage sensor are required to participate in the control. The effectiveness of the analysis and design in this paper are verified by experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.