Abstract

Link prediction is a crucial area of study within complex networks research. Mapping nodes to low-dimensional vectors through network embeddings is a vital technique for link prediction. Most of the existing methods employ “node–edge”-structured networks to model the data and learn node embeddings. In this paper, we initially introduce the Clique structure to enhance the existing model and investigate the impact of introducing two Clique structures (LECON: Learning Embedding based on Clique Of the Network) and nine motifs (LEMON: Learning Embedding based on Motif Of the Network), respectively, on experimental performance. Subsequently, we introduce a hypergraph to model the network and reconfigure the network by mapping hypermotifs to two structures: open hypermotif and closed hypermotif, respectively. Then, we introduce hypermotifs as supernodes to capture the structural similarity between nodes in the network (HMRLH: HyperMotif Representation Learning on Hypergraph). After that, taking into account the connectivity and structural similarity of the involved nodes, we propose the Depth and Breadth Motif Random Walk method to acquire node sequences. We then apply this method to the LEMON (LEMON-DB: LEMON-Depth and Breadth Motif Random Walk) and HMRLH (HMRLH-DB: HMRLH-Depth and Breadth Motif Random Walk) algorithms. The experimental results on four different datasets indicate that, compared with the LEMON method, the LECON method improves experimental performance while reducing time complexity. The HMRLH method, utilizing hypernetwork modeling, proves more effective in extracting node features. The LEMON-DB and HMRLH-DB methods, incorporating new random walk approaches, outperform the original methods in the field of link prediction. Compared with state-of-the-art baselines, the proposed approach in this paper effectively enhances link prediction accuracy, demonstrating a certain level of superiority.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.