Abstract

This paper presents an acoustic emission (AE) detection method for refined oil storage tanks which is aimed towards specialized places such as oil storage tanks with high explosion-proof requirements, such as cave oil tanks and buried oil tanks. The method utilizes an explosion-proof acoustic emission instrument to detect the floor of a refined oil storage tank. By calculating the time difference between the defective acoustic signal and the speed of acoustic wave transmission, a mathematical model is constructed to analyze the detected signals. An independent channel AE detection system is designed, which can store the collected data in a piece of independent explosion-proof equipment, and can analyze and process the data in a safe area after the detection, solving the problems of a short signal acquisition distance and the weak safety protection applied to traditional AE instruments. A location analysis of the AE sources is conducted on the bottom plate of the tank, evaluating its corrosion condition accurately. The consistency between the evaluation and subsequent open-tank tests confirms that using AE technology effectively captures corrosion signals from oil storage tanks' bottoms. The feasibility of carrying out online inspection under the condition of oil storage in vertical steel oil tanks was verified through a comparison with open inspections, which provided a guide for determining the inspection target and opening order of large-scale oil tanks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.