Abstract

A current-fed bridgeless interleaved power factor correction rectifier with voltage-doubler characteristic is proposed for a hybrid electric vehicle charging system. The simulated efficiencies, Total current Harmonics current Distortion (THDi), and Power Factor (PF) for the bridgeless interleaved Power Factor Correction (PFC) converter are presented in this paper. The differences of the simulated THD and PF between the proposed PFC boost converter and the conventional interleaved PFC boost converter are significant. The simulation results included a prototype boost converter converting universal AC input voltage 85–264 V to 400 V DC output at up to 3.4 kW load. The simulation results also demonstrate a power factor greater than 0.99 from a universal AC-line input 85–264 Vrms; THD <10% from a universal AC-line input 85–264 Vrms. The proposed converter achieved an average efficiency of 97% at 70 kHz switching frequency, 264 V input, and 0.5–3.4 kW output power. The proposed interleaved boost PFC rectifier exhibits an improved low-line efficiency compared with that of its conventional counterpart under 1.5 kW output power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call