Abstract

Near infrared (NIR) has prospectively applied in non-invasive blood glucose measurement due to glucose absorption among the 1.0-2.5m spectral bands. However, this significant technology is hard to be developed because of other blood components and low signal-to-noise ratio (SNR). In this work, we presented a non-invasive glucose measurement system using Fourier transform spectrometer which will work in fingertips or other human body tissues. A refrigerated InGaAs detector with high quantum efficiency performing well in the range of 1.0-1.7μm wavelength is used to acquire transmissive radiation. Preliminary experiment investigations were set up to test glucose levels of aqueous solutions with different concentrations. The analytical modeling of the interferogram data is based on arithmetic Fourier transform and supported by the curvilineal characterization. Experimental results show the variation of light intensity among different glucose concentrations and emphasize the obvious absorption of glucose in NIR wave-range. This study confirms the suitability that NIR can be developed in non-invasive glucose measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call