Abstract

The development of semi-active suspensions has introduced Pilot-operated Solenoid Valve Dampers (PSVD) that can adjust damping characteristics for different road conditions while considering stability and comfort. However, the PSVD’s additional control system and valve-controlled components make it challenging to avoid time lag in the response of the damping force when the control current signal is switched. This time lag characteristic significantly impacts the performance of the control system, making it difficult to achieve optimal dynamic performance and potentially compromising the safety of drivers and passengers. As a result, understanding and representing the PSVD time lag characteristics and investigating their influence have become important research areas in the field of semi-active suspension. This article begins by explaining the mechanism behind the generation of PSVD time lag characteristics. It analyzes the structure and operating principle of the PSVD, identifying two main types of time lag: electromagnetic time lag and inertial time lag. To address the limitations of existing simulation models, the study combines parameterization and finite element simulation to create a multi-physics field time lag characteristics kinetic representation model of the PSVD, incorporating the electric, magnetic, mechanical, and fluid aspects. To validate the accuracy of the time lag characteristics simulation model, tests on the velocity and time lag characteristics of the PSVD are conducted. The simulation results are compared to the test results, demonstrating that the maximum error of the lag time meets the engineering confidence requirement. This confirms the feasibility of establishing a simulation model for the PSVD time lag characteristics. Finally, we analyze the PSVD total lag time under different working conditions using the simulation model. It explores the relationship between the PSVD total lag time and the lag time of each component, proposes a lag time decomposition relationship, and investigates the crucial influencing factors on the lag time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.