Abstract

To predict the parameters of the quality of the processed parts and the period of durability of the cutting tool, mathematical models are needed that will allow us to calculate not only the mathematical expectation of the parameters of the machining process, but also the dispersion of these parameters. The working capacity of the tool and the quality parameters of the parts depend significantly on the temperature on the contact surfaces of the tool, as well as on the surface of the workpiece. Mathematical dependences for calculating the components of the total heat generation capacity during turning are given. It is assumed that the yield stress, which determines the cutting and friction forces on the contact surfaces of the cutter, workpiece and chip, depends on the temperature in the area of plastic deformation. The heat transfer at the boundaries of objects in contact with the process fluid or air is given in the form of the Newton-Richman law. The equations of thermal conductivity of contacting objects were solved together with the general boundary conditions in the contact zone, using the finite element method. The results of numerical simulation of the main component of the cutting force and temperatures in the contact zones of the face of the cutter with the chips and the fiank surface with the workpiece, depending on the yield strength of the workpiece material, are presented. The values of fluctuations in the cutting force and contact temperatures depending on the spread of the yield stress of the workpiece material during turning of workpieces made of 45 and 12X18H10T steels are determined. Based on the results of numerical modeling, regression equations are obtained for calculating the tangential component of the cutting force, the temperatures on the face and flank surfaces of the cutter, and the temperature on the surface of the workpiece.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call