Abstract

Domestic and foreign scientists in recent years have performed a considerable amount of scientific research on the biological justification of optimal combinations of microclimate parameters required for the normal development of animals. However, the results of the studies do not allow one to specify the optimal parameters for different species of animals, taking into account their age, sex, weight and level of feeding. While it is possible to specify rather wide limits of change of temperature and relative humidity of air at which productivity is maximum, and technical and economic efficiency is approximately the same. Providing microclimate regulations in livestock premises is associated with significant costs of electricity and heat, which is about 17% of the producers' costs. To create a microclimate in livestock premises based on the above technological parameters and the analysis of the design features of the recuperators, two design and technological schemes of the three-pipe recuperator, which differ in the directions of movement of air flows, are proposed. The purpose of the research is to increase the efficiency of the technological process of functioning of the three-pipe recuperator for livestock premises by substantiating its structural and mode parameters. The results of theoretical studies of pneumatic losses in the three-pipe recuperator determined the dependence of pressure and power losses on the length of the air duct of the three-pipe recuperator, the radius of the external duct and the volume flow rate of air. As a result of theoretical studies, a mathematical model of the heat transfer process in a three-pipe heat exchanger was developed, with condensation in it, which allows to determine the temperature distribution of air flows by its length and its thermal capacity. The results of theoretical studies of the process of heat transfer in the design and technological schemes of a three-pipe recirculator with counter-current and direct-current showed that the counter-current variant is more effective. Optimization of the results of theoretical studies allowed us to determine the dependence of the design parameters of the three-pipe heat exchanger on the volumetric flow rate of air, subject to the highest useful thermal power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.