Abstract

Ni–Al–Cr alloys in the β phase (B2–NiAl) region exhibit remarkable stability and mechanical property. Through thermal explosion (TE) reaction, Ni–Al–Cr intermetallic compounds with high porosity can be obtained. In this study, the focus lies on analyzing the macroscopic morphology, microstructure, phase distribution, TE behaviour, and the mechanical property of porous Ni–Al–Cr in the β phase region. Following the TE reaction, the Al-rich sintered product demonstrates a uniform phase composition and high porosity, reaching 44.39%. The vigorous TE reaction promotes the formation of interconnected pores, while the high porosity structure compromises the mechanical properties of the sample. Conversely, the Al-poor sintered product, due to a moderate TE reaction and low porosity structure, maintains its complete morphology and exhibits excellent compression resistance (yield stress reaching 538 MPa). This study offers valuable insights for the fabrication of porous Ni–Al–Cr materials with exceptional structure and performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.