Abstract

In the application of deep learning, the depth and width of the neural network structure have a great influence on the learning performance of the neural network. This paper focuses on structural optimization of depth and width, leveraging the information entropy model and decision tree strategy as feature selection and structural adjustment to optimize neural network candidates. Therefore, a decision tree-based heuristic optimization algorithm for neural network structural adjustment is proposed. Furthermore, the proposed approach is applied to fully-connected neural networks trained on the Iris dataset, and the proposed approach is verified effective via experimental simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.