Abstract
Subject of Research. The paper presents results of the experimental and theoretical studies on cesium distribution effect along the vapor cell walls of quantum rotation sensor on the quality of parametric resonance in cesium. Methods. Theoretical and experimental studies were performed using the mathematical model, quantum rotation sensor layout and the laboratory setup for the vapor cell parameters research. The mathematical model was used for calculation of cesium relaxation rate theoretical value at various temperatures and further comparison of these data with experimental ones. For the experimental determination of cesium relaxation rate, the data on the parametric resonance width in cesium obtained on the of the quantum rotation sensor model were used. Studies of the cell optical properties were carried out on a laboratory setup in non-resonant light. A laser with a vertical emitter similar to the one used in the quantum rotation sensor is applied as a source of non-resonant light, tuned away from the nominal wavelength. The optimal detuning of the optical radiation frequency from the cesium resonance was determined on the laboratory setup, that reduces the dependence of the measurement results on the cell temperature. Selection of laser radiation optimal parameters is performed for the normal mode of the laser operation and freedom from fluctuations in its power and polarization. Main Results. During the research it was shown that undesirable cesium redistribution in the vapor cell leads to the optical paths transparency change, which causes the deterioration of the signal-to-noise ratio and the decrease in the resonance line quality factor. In addition, it was shown that cesium resonance line broadening due to sedimentation of the cesium vapor on the cell walls is insignificant and is at the level of the measurement error. Practical Relevance. We have proposed and tested non-resonant light intensity control method for the laser emitter after passing through a vapor cell. This method provides for an operative state monitoring of the optical pumping channels and detecting of quantum rotation sensor layout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Scientific and Technical Journal of Information Technologies, Mechanics and Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.