Abstract
It is stated that the model of desired behavior has found a widespread usage in the theory and practice of control system design, with the state matrix having a binomial Newton placement of eigenvalues. A structural representation of these systems in the case of the transfer functions approach application leads to a system defined as a consecutive chain of identical first-order aperiodic links. Such model of the desired system behavior has the transient response of the system, which is characterized by the absence of overshoot, that is particularly valuable in the unique technological equipment control. Situation varies considerably when the control system with a binomial placement of eigenvalues has a nonzero initial state. Such situation may arise in the case of an unexpected power fail interrupt of the system electrical components followed by its recovery. This problem is especially important for remote online control of continuous plant in the case of the normal functioning disruption of the channel environment and its restoration in the future. The system in a form of consecutive chain of identical first-order aperiodic links mathematically has a three-parametric set as a module of the negative real eigenvalue, its multiplicity equal to the system dimension and aperiodic link gain. It was found that the three-parametric system may have trajectory emissions at any of negative eigenvalue module. The paper results are illustrated by the computer experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Scientific and Technical Journal of Information Technologies, Mechanics and Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.