Abstract

This paper presents research related to the tubular combustion chamber of an expendable turbojet. Although annular combustors are dominant at present, tubular combustors are still attractive because they are simpler to produce and require lower amounts of air flow for testing. The objective of this research was to assess the combustor’s primary zone configuration, and four configurations were tested to obtain experimental answers for use in future work. The configuration of the combustion chamber is a simple and classic design in line with its expendable purpose. The test methodology was to perform initial testing of the primary and secondary zones under atmospheric conditions using the four configurations, and then to subsequently complete the combustor using the best configuration. The complete combustor was then tested under both atmospheric conditions and working conditions. The results showed that the stability margin was wide enough to cover the combustor’s entire working area. The measured efficiency and pressure drop were in very good agreement with the corresponding designed values. The design and testing methodology proposed here could be used for similar scientific and engineering research applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.