Abstract

Using first principle based on the density functional theory, we have studied the the electronic and magnetic properties of zigzag graphene nanoribbons (ZGNRs) doped by gold atoms in divacancy. Our calculations show that edge site is the most stable doping site for gold atom, and the magnetism of ZGNRs is inhibited by the introduction of impurities. However, in the case of large enough doping ratio, the magnetic moment of doped edge restores anomalously. The band structure characteristic of gold doped ZGNRs is sensitive to doping ratio. As the doping ratio increases, Au doped ZGNRs show semiconducting, half-metallic and metallic properties, respectively. Our calculations prove that gold atoms doped ZGNRs could modulate the magnetic and band structure character, guiding the follow-up experiments, and promoting the application of graphene in spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call