Abstract
PurposeTaking the discipline construction in colleges and universities as the application background, based on the research on data mining technology and decision support system technology, the data generated by university management information system are effectively utilized. The paper aims to discuss these issues.Design/methodology/approachBased on the Beijing Key Discipline Information Platform as the data source, the decision tree algorithm of data mining is studied. On the basis of decision tree C4.5, the Bayesian theory is applied to the post-pruning operation of the decision tree.FindingsA decision tree post-pruning algorithm based on the Bayesian theory is studied and put forward in order to simplify the decision tree, which improves the generalization ability of the whole algorithm. Finally, the algorithm is used to build the prediction model of key disciplines. Combined with the decision support system architecture, data warehouse and the data mining algorithm constructed by university discipline, based on J2EE standard enterprise system specification, MVC model is applied. Moreover, a prototype system of decision support system for discipline construction in colleges and universities with browser/server (B/S) structure is completed and implemented.Originality/valueA decision tree post-pruning algorithm based on the Bayesian theory is studied and put forward in order to simplify the decision tree, which improves the generalization ability of the whole algorithm. Finally, the algorithm is used to build the prediction model of key disciplines. Combined with the decision support system architecture, data warehouse and the data mining algorithm constructed by university discipline, based on J2EE standard enterprise system specification, MVC model is applied. Moreover, a prototype system of decision support system for discipline construction in colleges and universities with B/S structure is completed and implemented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.