Abstract

As a combination device for a step-up pulse transformer and a magnetic switch, the saturable pulse transformer is widely used in pulsed-power and plasma technology. A fractional-turn ratio saturable pulse transformer is constructed and analyzed in this paper. Preliminary experimental results show that if the primary energy storage capacitors are charged to 300 V, an output voltage of about 19 kV can be obtained across the capacitor connected to the secondary windings of a fractional-turn ratio saturable pulse transformer. Theoretical and experimental results reveal that this kind of pulse transformer is not only able to integrate a step-up transformer and a magnetic switch into one device, but can also lower the saturable inductance of its secondary windings, thus leading to the relatively high step-up ratio of the pulse transformer. Meanwhile, the application of the fractional-turn ratio saturable pulse transformer in a μs range pulse modulator as a voltage step-up device and main switch is also included in this paper. The demonstrated experiments display that an output voltage with an amplitude of about 29 kV, and a 1.6 μs pulse width can be obtained across a 3500 Ω resistive load, based on a pulse modulator, if the primary energy storage capacitors are charged to 300 V. This compact fractional-turn ratio saturable pulse transformer can be applied in many other fields such as surface treatment, corona plasma generation and dielectric barrier discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call