Abstract

There is no information regarding the influence of heat stress (HS) on host metabolic profile. In this study, we investigated the effects of different environmental temperatures on oxidative status, hormone levels, HS indicators, and plasma metabolites in broilers. A total of 1,680 yellow-feather broilers (28 D old) were randomly allotted to 4 groups with 6 replicates. The broilers (29–57 D old) were maintained in thermostatic rooms (20°C, 25°C, 28°C, and 30°C) for 28 consecutive days. The results showed that the plasma cortisol and adrenocorticotropic hormone levels and creatine kinase and lactate dehydrogenase activities gradually increased when the temperature increased from 20°C to 30°C. However, the insulin-like growth factor-І level decreased gradually. Furthermore, heat shock protein 70 expression significantly increased in the liver and breast muscle (P < 0.01). As the temperature increased, the total anti-oxidant capacity in the plasma and liver gradually decreased, whereas the malondialdehyde level increased. The activity of plasma glutathione peroxidase and total superoxide dismutase in the liver showed a similar increasing trend (P < 0.01). In addition, 15 metabolites were identified at higher (P < 0.05) levels, whereas 2 metabolites were identified at lower (P < 0.05) levels in the 30°C treatment group than those in the 25°C treatment group. Most of these potentially diagnostic biomarkers are involved in carbohydrate, amino acid, lipid, or gut microbiome-derived metabolism, indicating that HS affected the metabolic pathways in broilers. Six candidate metabolites (tartronic acid, l-bethreine, tartaric acid, allose, glutaric acid, and neohesperidin) were selected as biomarkers, as they showed high sensitivity, specificity, and accuracy in diagnosing broilers under HS (P < 0.01). In conclusion, in the final stage of growth, we identified 6 plasma differential metabolites as potential biomarkers of HS-induced metabolic disorders in yellow-feathered broilers. This work offers new insights into the metabolic alterations of broilers exposed to HS and provides a new perspective for further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.