Abstract
In this study, a range of barley allelic mutants lost ADPG binding structure of starch synthase IIa (SSIIa) were created through targeted mutagenesis of SSIIa by RNA-guided Cas9. The transcriptomic and qRT-PCR results showed the increased mRNA expression of HvGBSSI and the decreased HvSSIIa and HvSBEI levels in ssIIa mutant grains, which were consistent with the expressions of GBSSI, SSS and SBE enzymatic activities, respectively. However, the increased expressions of HvSSI cannot effectively compensate for the loss of HvSSIIa. The metabolic pathway analysis showed that the mutation of SSIIa led to increased ADP-glucose synthesis in barley grains. The ssIIa mutant grains had two and six times amylose, and RS contents in control grains, respectively, and significantly changed starch structure and functions compared to the controls. No metabolite changes could compensate for the decrease of starch biosynthesis in the ssIIa null mutant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.