Abstract

Automatically identifying abnormal behaviors of caged laying hens in a thermal environment improves manual management efficiency. It also provides reference indicators for breeding heat-tolerant hens. In this study, we propose a deep learning-based method for automatic recognition and evaluation of typical heat stress behaviors in hens. We developed a lightweight object detection algorithm, YOLO-HGP, based on the YOLOv8n as the baseline model. YOLO-HGP achieves Precision (P), Recall (R), and mean average precision (mAP) of 95.952%, 94.127%, and 97.667%, respectively, effectively detecting typical heat stress behaviors in hens. Compared to the original YOLO v8n, YOLO-HGP improves R, and mAP by 6.257%, and 1.963%, respectively. The FLOPs (floating point operations) and parameter count of YOLO-HGP are 4.3G and 1.729M, reducing by 47.56% and 42.58% compared to the original model. Additionally, we introduce the "ORC-ratio" (The ratio of the combined frequency of open-beak breathing and retching behaviors to the frequency of closed-beak behaviors.) as an evaluation indicator for the frequency of typical heat stress behaviors in hens and combine it with the Hybrid-SORT multiobject tracking algorithm to achieve tracking detection of individual hens. The study demonstrates that the proposed model effectively identifies and quantitatively evaluates typical behaviors of hens in a thermal environment, providing an effective approach for the automated recognition of heat stress behaviors in hens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.