Abstract

The use of composite plate structures has become increasingly prevalent in industries such as civil engineering, aerospace, high-speed rail, automotive, and wind power. However, the propagation of ultrasonic Lamb waves in these structures is subject to multi-modal and frequency dispersion effects, which, coupled with the complicated anisotropic propagation mechanism of composite materials, makes it challenging to extract damage scatter signals without a health signal as a reference. In this study, we apply the frequency-wavenumber ( f- k) domain filter wavefront modal method to carbon fiber reinforced polymer (CFRP) materials and use a three-dimensional (3D) window function to achieve different modalities and their corresponding damage reflection signals in the absence of a reference dispersion curve. Single modal damage imaging is achieved using a common source method (CSM) by laser vibration scanning experiment. To effectively extract single modalities in laminate material damage detection, a 3D filter window function was constructed. Considering the skew angle correction, it can effectively remove the direct wave signal, so as to realize the imaging of the damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call