Abstract

Auto-oscillations may occur in moving vehicles in the area where the tire interacts with the support base. The parameters of such oscillations depend on the sliding velocity in the contact patch. As they negatively affect the processes occurring in the electric drive and the mechanical transmission, reducing their energy efficiency, such processes can cause failures in various elements. This paper aims to conduct a theoretical study into the peculiarities of oscillatory processes in the nonlinear system and an experimental study of the auto-oscillation modes of an individual traction drive. It presents the theoretical basis used to analyze the peculiarities of oscillation processes, including their onset and course, the results of simulation mathematical modeling and the experimental studies into the oscillation phenomena in the movement of the vehicle towards the supporting base. The practical value of this study lies in the possibility to use the results in the development of algorithms for the exclusion of auto-oscillation phenomena in the development of vehicle control systems, as well as to use the auto-oscillation processes onset and course analysis methodology to design the electric drive of the driving wheels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.