Abstract
The geological structures of the coal fields in China are complex. With a continuous increase in the mining depth, the coal seams show the characteristics of high gas and low permeability, and the disaster potential for a coal and gas outburst intensifies in the process of coal mining. Gas drainage is one of the primary measures used to prevent and control gas disasters. Effectively improving the permeability of a coal seam requires urgent attention. Currently, the method of loose blasting is used in engineering to enhance the permeability of coal seams. However, the technology of loose blasting easily leads to the poor development of coal fractures or the severe crushing of coal, which will affect the gas drainage. Thus, this paper studied the technology of liquid CO2 phase-transition fracturing in a coal seam. COMSOL was used to determine the influence radius of the liquid carbon-dioxide phase-transition cracking, which was 13.4 m, and to design the scheme of the borehole. The field test was carried out in the 81,506th working face of the Baode Coal Mine. From the onsite-monitoring data, the results showed that the drainage effect increased by 293.9%, the gas-drainage concentration increased by 242.4%, the permeability coefficient of the coal seam increased by 3–7.75 times, and the permeability enhancement effect was good.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.