Abstract

In this paper, a ceramic suspension with appropriate viscosity was prepared by optimizing the powder solid content and the dispersant content. An Al2O3-ZrO2 ceramic green body was fabricated using the SLA technique, followed by the application of a liquid drying and two-step debinding process to prepare the defect-free Al2O3-ZrO2 ceramic green body. The relative density, phase composition, microstructure, grain size, and mechanical properties of Al2O3-ZrO2 samples sintered at different temperatures were compared. The main results indicated that the sample density increased with the sintering temperature until reaching a maximum density of 4.28 g/cm3 at 1600 °C. When the temperature further increased to 1650 °C, the density dropped instead. With increasing sintering temperature, both the number of grain boundaries and the number of pores located at the grain boundaries reduced greatly. The Vickers hardness of the samples first increased and reached its maximum at 1550 °C with a value of 17.6 GPa, and then decreased with further increases in sintering temperature. The fracture toughness increased with the sintering temperature and reached a maximum value of 5.2 MPa·m1/2 at 1650 °C. A sintering kinetics window which could offer the relationship between the sintering temperature and the relative density & grain size was set and also the microstructure evolution of the sintered body was conducted to get a deeper understanding of the 3D printing Al2O3-ZrO2 composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call