Abstract

The drilling process in real production places ever-increasing demands on the length and accuracy of the holes made. The drilling of holes beyond a length-to-diameter ratio of 5–10 is called deep drilling. The aim of the research was to determine in detail the deep-drilling process input conditions, their impact on the stability of the cutting process and the degree to which the output requirements were achieved. The focus of the analysis was on how the monitored technological and physical impacts translate into achieving the required gun-drill life and the quality and dimensional accuracy of deep holes, as well as their overall impact on tool life. Based on the analysis, tests were conducted to verify the impact of individual parameters on tool life. The obtained results were then statistically evaluated and optimized. Drawing on the evaluated experimental results, solutions and procedures were proposed and implemented in the environment of a real operation. This research obtained the optimal values of the frequency of rotation and displacement to ensure maximum tool life while maintaining the efficiency of the production of drilled parts. At the same time, based on the research, a methodology and recommendations for deep-drilling technology were developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.