Abstract
Introduction. The novelty of the research is driven by the growing environmental contamination with anthropogenic substances, and in the course of accidents and emergency situations, as well as the need to develop the most advanced methods of their elimination. More intensive application of selected micro-organisms, capable of using variable valency chemicals as terminal acceptors, can help to treat wastewater from organic and mineral pollutants.
 Materials and methods. The co-authors have performed a review of literature and used analytical equipment to conduct laboratory researches according to standard and advanced methodologies.
 Results. The principal results include the restructuring of the treatment facilities operated by Autodetail Open Joint Stock Company. The restructuring consisted in the feeding process change in the currently used biological tower for the feeding to be performed with the help of the fiber carrier and immobilized association of oil oxidizing microorganisms. The association was obtained in the course of earlier laboratory researches. The most active nitrogen-gathering and oil oxidizing cultures, including Rhodococcus erythropoltis, Pseudomonas fluorescens, Arthrobacter tumescens, Pseudomonas rathonis, Azotobacter chroococcum, taken in equal parts, helped to develop a bio-product designated for the decomposition of oil and its components in the aquatic environment. This bio-product was immobilized in respect of the feeding to be performed with the help of the fiber carrier and loaded into the production company’s biological tower which is part of idle wastewater treatment facilities.
 Conclusions. In the course of the work performed at the first stage, special cultures were selected for the treatment of water from hydrocarbons of anthropogenic origin. These cultures had nitrogen-fixing properties needed to reduce secondary anthropogenic pollution of the water body. At the second stage, water treatment facilities of Autodetail Open Joint Stock Company were restructured and operation-related results were obtained. They enabled the researchers to make a statement that the biological transformation of pollutions was efficiently applicable to the suspended matter — 99.7 %; oil products — 98.3 %; COD — 89.2 %; nitrogen of ammonium salts — 77.9 %; mineral phosphorus — 53.3 %.
 Acknowledgements: The co-authors would like to express gratitude to all reviewers and the writing team for the publication of this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.