Abstract

Container stacking and reshuffling are important issues in the management of operations in a container terminal. Minimizing the number of reshuffles can increase productivity of the yard cranes and the efficiency of the terminal. In this research, the authors improve the existing static reshuffling model, develop five effective heuristics, and analyze the performance of these algorithms. A discrete-event simulation model is developed to animate the stacking, retrieving, and reshuffling operations and to test the performance of the proposed heuristics and their extended versions in a dynamic environment with arrivals and retrievals of containers. The experimental results for the static problem show that the improved model can solve the reshuffling problem more quickly than the existing model and the proposed extended heuristics are superior to the existing ones. The experimental results for the dynamic problem show that the results of the extended versions of the five proposed heuristics are superior or similar to the best results of the existing heuristics and consume very little time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.