Abstract
An RNA sequence is a word over an alphabet on four elements {A, C, G, U} called bases. RNA sequences fold into secondary structures where some bases match one another while others remain unpaired. Pseudoknot-free secondary structures can be represented as well-parenthesized expressions with additional dots, where pairs of matching parentheses symbolize paired bases and dots, unpaired bases. The two fundamental problems in RNA algorithmic are to predict how sequences fold within some model of energy and to design sequences of bases which will fold into targeted secondary structures. Predicting how a given RNA sequence folds into a pseudoknot-free secondary structure is known to be solvable in cubic time since the eighties and in truly subcubic time by a recent result of Bringmann et al. (FOCS 2016), whereas Lyngso has shown it is NP-complete if pseudoknots are allowed (ICALP 2004). As a stark contrast, it is unknown whether or not designing a given RNA secondary structure is a tractable task; this has been raised as a challenging open question by Anne Condon (ICALP 2003). Because of its crucial importance in a number of fields such as pharmaceutical research and biochemistry, there are dozens of heuristics and software libraries dedicated to RNA secondary structure design. It is therefore rather surprising that the computational complexity of this central problem in bioinformatics has been unsettled for decades. In this paper we show that, in the simplest model of energy which is the Watson-Crick model the design of secondary structures is NP-complete if one adds natural constraints of the form: index i of the sequence has to be labeled by base b. This negative result suggests that the same lower bound holds for more realistic models of energy. It is noteworthy that the additional constraints are by no means artificial: they are provided by all the RNA design pieces of software and they do correspond to the actual practice (see for example the instances of the EteRNA project). Our reduction from a variant of 3-Sat has as main ingredients: arches of parentheses of different widths, a linear order interleaving variables and clauses, and an intended rematching strategy which increases the number of pairs iff the three literals of a same clause are not satisfied. The correctness of the construction is also quite intricate; it relies on the polynomial algorithm for the design of saturated structures – secondary structures without dots – by Hales et al. (Algorithmica 2016), counting arguments, and a concise case analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.