Abstract
Undergraduate research experiences are an instrumental component of student development, increasing conceptual understanding, promoting inquiry-based learning, and guiding potential career aspirations. Moving one step further, as research continues to become more interdisciplinary, there exists potential to accelerate student growth by granting additional perspectives through collaborative research. This study demonstrates the utilization of a model collaborative research project, specifically investigating the development of sorbent technologies for efficient CO2 capture, which is an important research area for improving environmental sustainability. A model CO2 sorbent system of heteroatom-doped porous carbon is utilized to enable students to gain knowledge of adsorption processes, through combined experimental and computational investigations and learnings. A particular emphasis is placed on creating interdisciplinary learning experiences, exemplified by using density functional theory (DFT) to understand molecular interactions between doped carbon surfaces and CO2 molecules as well as explain underlying physical mechanisms that govern experimental results. The experimental observations about CO2 sorption performance of doped ordered mesoporous carbons (OMCs) can be correlated with simulation results, which can explain how the presence of heteroatom functional groups impact the ability of porous carbon to selectively adsorb CO2 molecules. Through an inquiry-focused approach, students were observed to couple interdisciplinary results to construct holistic explanations, while developing skills in independent research and scientific communications. This collaborative research project allows students to obtain a deeper understanding of sustainability challenges, cultivate confidence in independent research, prepare for future career paths, and most importantly, be exposed to strategies employing interdisciplinary research approaches to address scientific challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.