Abstract

A fractional factorial experimental design was used to determine the maximum production and photosynthetic efficiency that could be achieved in shallow algal mass culture systems (SAMCS) of the marine diatom Phaeodactylum tricornutum. Dilution rate and CO/sub 2/ supply were found to be the most important system parameters. Maximum production was found to be about 25 g dry wt m/sup -2/d/sup -1/. This production corresponded to a photosynthetic efficiency of 5.6%. These figures are 50 to 100% better than the production rates achieved in earlier P. tricornutum cultures using conventional culture techniques. The results are consistent with a theoretical model of the impact of the flashing light effect on algal mass culture production. This model predicts that at the typical irradiances in Hawaii, full utilization of the flashing light effect should enhance production by 70% to over 200%. It was concluded that the use of foil arrays in the experimental flume creates systematic vertical mixing on a time scale suitable for utilizing the flashing light effect. Production of P. tricornutum culture is probably limited by temperature. P. tricornutum cannot survive at temperatures in excess of 25/sup 0/C in outdoor mass cultures. Growth of mesophilic species in the temperature range 30 tomore » 35/sup 0/C may well result in even higher production than that achieved with P. tricornutum.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.