Abstract

Metaplasia detection in upper gastrointestinal endoscopy is crucial to identify patients at higher risk of gastric cancer. Deep learning algorithms can be useful for detecting and localising these lesions during an endoscopy exam. However, to train these types of models, a lot of annotated data is needed, which can be a problem in the medical field. To overcome this, data augmentation techniques are commonly applied to increase the dataset’s variability but need to be adapted to the specificities of the application scenario. In this study, we discuss the potential benefits and identify four key research challenges of a promising data augmentation approach, namely image combination methodologies, such as CutMix, for metaplasia detection and localisation in gastric endoscopy imaging modalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.