Abstract

In this study, the wear characteristics of the die were tested and analyzed through compaction tests, and the distribution of wear depth along the direction toward the extrusion outlet was obtained. A discrete element method (DEM) model of the die’s wear process was established. The results show that the severe wear area is located near the stop position of the compression rod, forming a plow-shaped wear area along the extrusion direction, accompanied by fatigue peeling. The wear depth gradually decreases towards the extrusion outlet. The DEM model partially reveals the occurrence of the wear phenomenon, but the particle motion speed deviates from the actual situation. The maximum compression force value range during the DEM compression stage is within the actual maximum compression force value range, and the relative error range of the average maximum compression force is less than 2%. By verifying the formula to calibrate the model, the calibrated model is compared with the actual mold wear, and the predicted value is close to the actual test result. The DEM can be used to explore the wear mechanism and predict the die’s wear failure process, laying the foundation for optimizing die wear resistance design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.