Abstract
Bohai X oilfield has reached the extra-high water cut stage of more than 95%, dominated by the bottom water reservoir. The oilfield mainly adopts horizontal-well exploitation, with the characteristics of high difficulty and low success rate for well water plugging. To solve the above problem, the segmented production technology of horizontal wells was developed to guide oilfield applications and tap their potential. In the segmented design stage, the horizontal section is objectively segmented by drilling condition analysis, optimally based on drilling through interlayers or permeability discrepancy formation, simultaneously combined with the numerical simulation method. When implementing measures, annulus chemical packer materials are squeezed between segments to effectively inhibit the fluid flow between the open hole and the sand-packing screen pipe. Moreover, the packers are used to seal between segments to effectively restrain the flow between the screen and the central tube, achieving the establishment of compartments. In the production process, the valve switch on the central tube can be independently controlled by a remotely adjustable method to achieve optimal production. This segmented production technology was successfully tested for the first time in Bohai oilfield. Up to now, a total of six compartment measures have been implemented, remarkably decreasing water cut and increasing oil production for horizontal wells in the bottom water reservoir. This method does not require water testing, and the optimal production section can be chosen through segmented independent production, greatly improving the success rate of water-plugging measures for horizontal wells. This technology opens up a new mode for the efficient development of horizontal wells in bottom water reservoirs and is planned to be widely promoted and applied in similar oilfields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.