Abstract

Exploring new solvents for efficient acid gas removal is one of the most attractive topics in industrial gas purification. Herein, using 2-tertiarybutylamino-2-ethoxyethanol as an absorbent in a packed column at atmospheric pressure was examined for selective absorption of H2S from mixed gas streams. In the present work, the acid gas load, H2S absorption selectivity, acid gas removal ratio, amine solution regeneration performance, and corrosion performance were investigated through evaluating experiments absorbing H2S and CO2 by using methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol. The experimental results illustrate that the H2S absorption selective factors were 3.88 and 15.81 by using 40% methyldiethanolamine and 40% 2-tertiarybutylamino-2-ethoxyethanol at 40 °C, respectively, showing that 2-tertiarybutylamino-2-ethoxyethanol is an efficient solvent for selective H2S removal, even better than methyldiethanolamine. Based on the consideration of cost, we added 5% TBEE to 35% MDEA to form a blended aqueous solvent. To our satisfaction, the blended amine solvent obtained a 99.79% H2S removal rate and a 22.68% CO2 co-absorption rate, while using the methyldiethanolamine alone achieved a 98.33% H2S removal rate and a 23.52% CO2 co-absorption rate; the blended solvent showed better H2S absorption efficiency and selectivity. Taken together, this work provides valuable information for a promising alkanolamine for acid gas removal, and the preliminary study has found that the aqueous blend of methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol is an efficient solvent for selective H2S removal, which not only extends the application field for sterically hindered amines, but also opens up new opportunities in blended solvent design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call